::: Welcome to Conservation Genome Resource Bank for Korean Wildlife :::
 
17_c.gif ¹®ÇåÁ¤º¸
17_c.gif ¾ß»ýµ¿¹°°ü·Ã ÀÚ·á ¹× ¼Ò½Ä
17_c.gif Á¾Á¤º¸
17_c.gif º¸ÀüÀ¯ÀüÇÐ/º¸Àü»ý¹°ÇÐ ÀÚ·á
17_c.gif ¾ß»ýµ¿¹°ÀÇÇÐ ¼Ò½Ä ¹× ÀÚ·á
  - õ¿¬±â³ä¹°ÀÇ ´ë»ó
sound.gif °¶·¯¸®
sound.gif ÀÚÀ¯°Ô½ÃÆÇ (¿¾³¯ °Ô½ÃÆÇ)
sound.gif °ü·Ã»çÀÌÆ®
sound.gif ÀÚ·á½Ç
sound.gif Ã£¾Æ¿À½Ã´Â ±æ
º¸ÀüÀ¯ÀüÇÐ/º¸Àü»ý¹°ÇÐ ÀÚ·á

View Article
Name
  ¿î¿µÀÚ 2005-04-30 15:59:21 | Hit : 25089 | Vote : 7545
Subject   [ÀÚ·á] Population genetics after fragmentation: the case of the endangered Spanish imperial eagle (Aquila adalberti).
Mol Ecol. 2004 Aug;13(8):2243-55. Related Articles, Links  

  
Population genetics after fragmentation: the case of the endangered Spanish imperial eagle (Aquila adalberti).

Martinez-Cruz B, Godoy JA, Negro JJ.

Estacion Biologica de Donana (CSIC), Avda. Maria Luisa s/n, 41013 SEVILLA, Spain. bemar@ebd.csic.es

The highly endangered Spanish imperial eagle, Aquila adalberti, has suffered from both population decline and fragmentation during the last century. Here we describe the current genetic status of the population using an extensive sampling of its current distribution range and both mitochondrial control region sequences and nuclear microsatellite markers. Results were evaluated in comparison to those obtained for the Eastern imperial eagle, Aquila heliaca, its nearest extant relative. Mitochondrial haplotype diversity was lower in the Spanish than in the Eastern species whereas microsatellite allelic richness and expected heterozygosity did not differ. Both allelic richness and expected heterozygosity were lower in the small Parque Nacional de Donana breeding nucleus compared to the remaining nuclei. A signal for a recent genetic bottleneck was not detected in the current Spanish imperial eagle population. We obtained low but significant pairwise FST values that were congruent with a model of isolation by distance. FST and exact tests showed differentiation among the peripheral and small Parque Nacional de Donana population and the remaining breeding subgroups. The centrally located Montes de Toledo population did not differ from the surrounding Centro, Extremadura and Sierra Morena populations whereas the latter were significantly differentiated. On the other hand, a Bayesian approach identified two groups, Parque Nacional de Donana and the rest of breeding nuclei. Recent migration rates into and from Parque Nacional de Donana and the rest of breeding nuclei were detected by assignment methods and estimated as 2.4 and 5.7 individuals per generation, respectively, by a Bayesian approach. We discuss how management strategies should aim at the maintenance of current genetic variability levels and the avoidance of inbreeding depression through the connection of the different nuclei. Copyright 2004 Blackwell Publishing Ltd

PMID: 15245398 [PubMed - indexed for MEDLINE]

Àüü ¹®¼­ º¸±â : ¹Ù·Î°¡±â
 Prev   [ÀÚ·á] The ecological effect of roads
¿î¿µÀÚ
  2005/04/30 
 Next   [ÀÚ·á] Risk analysis for invasive species: General framework and research needs
¿î¿µÀÚ
  2005/04/23 


Copyright 1999-2024 Zeroboard / skin by daerew
151-742 ¼­¿ïƯº°½Ã °ü¾Ç±¸ ½Å¸²9µ¿ »ê56-1 ¼­¿ï´ëÇб³ ¼öÀÇ°ú´ëÇÐ 85µ¿ 802È£
Tel 02-888-2744, Fax 02-888-2754, E-mail cgrb@cgrb.org

Copyright © 2002-2004 CGRB All Rights Reserved