::: Welcome to Conservation Genome Resource Bank for Korean Wildlife :::
 
17_c.gif ¹®ÇåÁ¤º¸
17_c.gif ¾ß»ýµ¿¹°°ü·Ã ÀÚ·á ¹× ¼Ò½Ä
17_c.gif Á¾Á¤º¸
17_c.gif º¸ÀüÀ¯ÀüÇÐ/º¸Àü»ý¹°ÇÐ ÀÚ·á
17_c.gif ¾ß»ýµ¿¹°ÀÇÇÐ ¼Ò½Ä ¹× ÀÚ·á
  - õ¿¬±â³ä¹°ÀÇ ´ë»ó
sound.gif °¶·¯¸®
sound.gif ÀÚÀ¯°Ô½ÃÆÇ (¿¾³¯ °Ô½ÃÆÇ)
sound.gif °ü·Ã»çÀÌÆ®
sound.gif ÀÚ·á½Ç
sound.gif Ã£¾Æ¿À½Ã´Â ±æ
º¸ÀüÀ¯ÀüÇÐ/º¸Àü»ý¹°ÇÐ ÀÚ·á

View Article
Name
  ¿î¿µÀÚ 2006-10-10 14:07:40 | Hit : 25278 | Vote : 9257
Subject   [ÀÚ·á] Modern computational approaches for analysing molecular genetic variation data

Reviews
Nature Reviews Genetics 7, 759-770 (October 2006) | doi:10.1038/nrg1961

Focus on: Statistical Analysis
Modern computational approaches for analysing molecular genetic variation data
Paul Marjoram1 and Simon Tavaré1,2  About the authors

Top of pageAbstractAn explosive growth is occurring in the quantity, quality and complexity of molecular variation data that are being collected. Historically, such data have been analysed by using model-based methods. Models are useful for sharpening intuition, for explanation and for prediction: they add to our understanding of how the data were formed, and they can provide quantitative answers to questions of interest. We outline some of these model-based approaches, including the coalescent, and discuss the applicability of the computational methods that are necessary given the highly complex nature of current and future data sets.


http://www.nature.com/nrg/journal/v7/n10/full/nrg1961.html
 Prev   [ÀÚ·á] Genetic relatedness analysis: modern data and new challenges
¿î¿µÀÚ
  2006/10/16 
 Next   [ÀÚ·á] Computer programs for population genetics data analysis: a survival guide
¿î¿µÀÚ
  2006/10/10 


Copyright 1999-2024 Zeroboard / skin by daerew
151-742 ¼­¿ïƯº°½Ã °ü¾Ç±¸ ½Å¸²9µ¿ »ê56-1 ¼­¿ï´ëÇб³ ¼öÀÇ°ú´ëÇÐ 85µ¿ 802È£
Tel 02-888-2744, Fax 02-888-2754, E-mail cgrb@cgrb.org

Copyright © 2002-2004 CGRB All Rights Reserved