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As an endangered animal group, musk deer (genus
Moschus) are not only a great concern of wildlife
conservation, but also of special interest to evolution-
ary studies due to long-standing arguments on the
taxonomic and phylogenetic associations in this group.
Using museum samples, we sequenced complete mito-
chondrial cytochrome b genes (1140 bp) of all sug-
gested species of musk deer in order to reconstruct
their phylogenetic history through molecular informa-
tion. Our results showed that the cytochrome b gene
tree is rather robust and concurred for all the algo-
rithms employed (parsimony, maximum likelihood, and
distance methods). Further, the relative rate test indi-
cated a constant sequence substitution rate among all
the species, permitting the dating of divergence events
by molecular clock. According to the molecular topol-
ogy, M. moschiferus branched off the earliest from a
common ancestor of musk deer (about 700,000 years
ago); then followed the bifurcation forming the M.
berezovskii lineage and the lineage clustering M. fus-
cus, M. chrysogaster, and M. leucogaster (around 370,000
years before present). Interestingly, the most recent
speciation event in musk deer happened rather re-
cently (140,000 years ago), which might have resulted
from the diversified habitats and geographic barriers
in southwest China caused by gigantic movements of
the Qinghai-Tibetan Plateau in history. Combining the
data of current distributions, fossil records, and mo-
lecular data of this study, we suggest that the historical
dispersion of musk deer might be from north to south
in China. Additionally, in our further analyses involv-
ing other pecora species, musk deer was strongly
supported as a monophyletic group and a valid family
in Artiodactyla, closely related to Cervidae.
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INTRODUCTION

Mitochondrial DNA (mtDNA) are valuable molecules
for the reconstruction of evolutionary relationships
among populations, species, and higher taxa (Avis,
1986; Moritz et al., 1987; Harrison, 1989; Hillis and
Moritz, 1990). The cytochrome b (Cytb) gene is one of
the best known of the 9-10 genes involved in the
mitochondrial oxidative phosphorylation system (Hatefi,
1985). To date, many phylogenetic questions have been
addressed based on Cytb sequences, and both the
merits and the demerits of Cytb as a genetic marker
have been discussed. Technically, with the advent and
rapid development of the polymerase chain reaction
(PCR)-based techniques, researchers can now recover
genetic information from degraded specimens, such as
bones, dried skins, excrement, and even fossils (Higu-
chi, 1988; Paabo, 1989). This technical development
has greatly enriched the possibilities of sampling, not
only noninvasively from live animals, but also from
museum specimens.

Musk deer (genus Moschus) are widely distributed in
China and adjacent areas (especially the Qinghai—
Tibetan Plateau and Himalayan areas) (Groves et al.,
1995). Many morphological studies have been done on
the taxonomy of this group, but controversies concern-
ing the numbers of species and subspecies and the
phylogenetic relationships among them still remain
(Ellerman, 1950; Gao, 1963, 1985; Li, 1981; Grubb,
1982; Groves et al., 1986, 1995; Ohtaishi et al., 1990;
Sheng, 1989; Wang et al., 1993). Based on the character-
istics of external and skull morphology used in a
multivariate analysis, Groves et al. (1995) suggested
that there are five species of musk deer. They are
Siberian musk deer (M. moschiferus), forest musk deer
(M. berezovskii), black musk deer (M. fuscus), Alpine
musk deer (M. chrysogaster), and Himalayan musk
deer (M. leucogaster). Cytogenetically, Shi and Ma
(1986) studied the mitotic and synaptomenal karyo-
types of the forest musk deer (M. berezovskii). The
diploid number was found to be 58, which concurred
with the report on M. moschiferus by Sokolov et al.
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(1980). However, phylogenetic studies using molecular
approaches have been rare. In this study, using mu-
seum samples, we sequenced complete Cytb genes of
musk deer in order to provide molecular evidence for
the unsolved questions in musk deer phylogeny.

MATERIALS AND METHODS

Sample Collection

Samples were acquired from collections of the Kun-
ming Institute of Zoology, the Institute of Zoology in
Beijing, and the Hei-long-jiang Natural Resources Insti-
tute in Harbin of China. All samples were pieces of
dried skins cut from whole leather specimens stored for
periods ranging from several years to decades (Table 1).
All specimens were studied and taxonomically identi-
fied by morphologists based on analyses of the whole
animals. In this study, a total of 15 individual samples
was obtained, and 8 samples were found to have
recoverable DNA representing all suggested species
and one subspecies of M. berezovskii (see Table 1 for
details).

DNA Extraction

We followed the method of Walsh et al. (1991) in our
DNA extraction with a few optimizations for dried skin

TABLE 1

Provenance of Museum Samples Used in this Study

Date
Specimen Location sampled (no.) Origin

M. moschiferus 1 HNI 1979(/) Yichun, Hei-
(Siberian musk longjiang Prov.
deer)

M. moschiferus 2 HNI 1981(/) Xiaoxinganling
(Siberian musk Mountain
deer)

M. chrysogaster.si- Klz 1982(82042) Dege, Sichuan Prov.
fanicus (Alpine
musk deer)

M. fuscus (Black Klz 1978(780414) Bijiang, Yunnan
musk deer) Prov.

M. leucogaster Bl1zZ /(T129) Tibet
(Himalayan musk
deer)

M. berezovskii Klz 1978 (780422) Bijiang, Yunnan,
bijiangensis-1 Prowv.
(Forest musk
deer)

M. berezovskii K1z 1990 (R90139) Tengchong, Yunnan
bijiangensis-2 Prov.
(Forest musk
deer)

M. berezovskii cao- K1z /(006734) Mile, Yunnan Prov.

bangis (Forest
musk deer)

Note. HNI, Hei-long-jiang Natural Resources Institute of China;
K1z, Kunming Institute of Zoology, the Chinese Academy of Sciences;
BIZ, Institute of Zoology (Beijing), the Chinese Academy of Sciences.
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TABLE 2
The 16 Primers Used in PCR and Sequencing
of this Work

1. L14724 5'-CGAAGCTTGATATGAAAAACCATCGTTG-3
2. 114841 5'-CCATCCAACATCTCAGCATGATGAAA-3
3. L15026 5'-GGAGCATCAATATTCTTTATCTGCC-3
4. 115158 5'-GGATATGTCCTACCTTGAGGACAAA-3
5. L15267 5'-GGCTTCTCAGTAGACAAAGCAA-3
6. L15402 5'-CATCGGACGCAGACAAAATCCC-3
7. L15579 5'-CCCGAATGATACTTCCTATTTGCATA-3
8. L15738 5'-GCCTATTTTGAATTTTAGTAGCAGA-3
9. H14898 5 -TTGTATCGGATGTATAGTGTATTGCTA-3
10. H15042 5'-CTGCTCCGGATATGATGCCTAGTA-3
11. H15168 5'-GGTTGGTGATGACTGTTGCTCCTC-3
12. H15275 5'-GGATGAAGTGGAAGGCAAAGAATCG-3
13. H15413 5'-CCTAGAATGTCTTTGATGGTGTAGTA-3
14. H15605 5'-GGCTAGTACTCCTCCTAGTTT-3
15. H15749 5'-CTGGTTGTCCTCCAATTCATGTGAG-3
16. H15915 5'-AACTGCAGTCATCTCCGGTTTACAAGAC-3

samples. All chemicals and utensils were sterilized
before use. The DNA extraction was processed under
ultraviolet-cleaned conditions. During the extraction, a
negative control tube was prepared to monitor possible
contamination. However, it deserves mention that in
our experience, the success of DNA recovery from dried
skin samples depends largely on the original condition
of specimens. The hard parts of the specimens are
generally less degraded and have proved to be DNA
recoverable, while the soft or loose parts usually do not
contain recoverable DNA due to overtreatment for
antiseptic purposes or overdegradation in storage.

PCR and DNA Sequencing

We designed a group of primers to amplify the whole
Cytb gene from the degraded DNA samples (Table 2).
The reference sequences for primer design were from
nine deer species (unpublished data). The universal
primers of L14724, H15149, and L14841 were also used
(Irwin et al., 1991). Principally, each pair of primers
was designed to cover a 200- to 300-bp fragment
because for degraded DNA samples longer fragments
usually cannot be amplified through PCR. Each entire
Cytb sequence was generated by aligning and overlap-
ping the eight fragment sequences. PCRs were done on
a Robocycler (Stratagene). The PCR conditions were:
predenature at 94°C for 2 min, then cycling at 94°C (30
s), 42-50°C (30 s, varying among primers), 72°C (1 min)
for 40 cycles, and final extension at 72°C for 5 min. PCR
products were purified through LMP agarose electropho-
resis and roughly quantified by eye through EB stain-
ing.

For sequencing, an automatic DNA sequencer (ABI
Model 377) was used for direct sequencing of double-
stranded PCR products. A cycle sequencing protocol
with FS Kit (ABI) was used following instructions of the
producer. All amplified fragments were sequenced with
both light- and heavy-stranded primers.
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FIG. 1.

DNA Sequence Alignment and Phylogenetic Analysis

DNA sequence alignments were done by eye; the
variant sites were double checked by viewing the
four-colored electromorph of sequencing results. For
phylogenetic analysis, we used three mainstream algo-
rithms for phylogenetic reconstruction, the most parsi-
mony method using PAUP 3.0 (Swofford, 1989), the
maximum likelihood method using Phylip 3.5¢ (Felsen-
stein, 1993), and the neighbor-joining (NJ) method
using Mega 1.02 (Kumar et al., 1993). Confidence
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Complete sequences of mitochondrial cytochrome b gene of musk deer.

values for internal lineages in parsimony analysis were
assessed by bootstrapping (Felsnestein, 1985), and
branch length confidence levels (CP values) for NJ trees
were obtained through t tests. In order to root the trees,
a set of available pecora sequences was tried as out-
group data. The relative rate tests were done following
Sarich and Wilson (1973). The moose (Alces alces) was
used as outgroup in the analysis.

In order to determine the taxonomic status of musk
deer and its phylogenetic relationships with other
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pecora groups, the available complete Cytb sequences
of 21 other pecora species were chosen for analysis
(Chikuni et al., 1995; Irwin et al., 1991; Anderson et al.,
1982; Tanaka et al., 1996). They represent the other 4
families in the pecora group, including 1 species in the
Giraffidae, 1 species in the Antilocapridae, 8 species in
the Bovidae, and 11 species in the Cervidae. In addi-
tion, the sequences of 2 species in the Tragulidae were
used for rooting.

RESULTS AND DISCUSSION

Cytochrome b Gene Sequences and Variations

Figure 1 shows the aligned Cytb sequences of musk
deer and moose. In the eight samples sequenced, seven
Cytb haplotypes were observed, while the sequences of
the two M. moschiferus are identical even though their
geographic origins are different (Table 1). Among the
1140 bp of Cytb sequences, all the sequences start with
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TABLE 3

Base Composition at First, Second, and Third Positions of Codons in Musk Deer

First Second Third

Species A T C G A T C G A T C G Bias?
M. moschiferus 30.3 23.2 245 21.9 20.3 42.7 235 135 44.9 20.8 31.7 2.6 0.355
M. chrysogaster 30.3 23.0 24.5 22.2 20.3 42.7 23.5 135 45.1 21.6 30.6 2.6 0.343
M. fuscus 30.3 23.2 243 22.2 20.3 42.7 235 135 44.6 21.4 30.9 3.2 0.339
M. leucogaster 30.6 23.0 24.5 219 20.3 42.7 235 13.5 45.6 20.6 31.7 2.1 0.364
M. b. bijiangensis-1 30.3 235 23.7 22.4 20.3 43.0 23.2 135 44.9 22.7 29.6 2.9 0.326
M. b. bijiangensis-2 30.3 23.2 24.0 22.4 20.3 43.0 23.2 13.5 44.9 22.7 29.6 2.9 0.326
M. b. caobangis 30.6 23.2 24.0 22.2 20.3 43.0 23.2 135 45.4 21.9 30.3 2.4 0.343
Mean 30.4 23.2 24.2 22.2 20.3 42.9 23.4 13.5 45.0 21.7 30.6 2.7 0.341

a Values at the third codons; the fomula for bias calculations follows Irwin et al. (1991).

initial codon ‘TGA' and end in stop codon ‘AGA,’ coding
379 amino acids in length. No deletions or insertions
were observed. The compositions of nucleotides for each
sequence are listed in Table 3, which shows that the
nucleotide composition biases are similar among the
sequences. This fits the requirements of a good phyloge-
netic marker (Irwin et al., 1991). Within the musk deer,
a total of 125 sites are variable (10.96%), of which 13
sites are located at the first codons, 3 sites at the
second, and 109 sites at the third. Interestingly, among
the 16 sites with the first and second codon substitu-
tions, 9 sites lead to 8 amino acid changes while the
other 7 sites are synonymous substitutions of the first
codon of leucine. The amino acid substitutions all
happened among the hydrophobic amino acids (leucine,
isoleucine, valine, threonine, and alanine), which are
located mainly in the transmembrane domain of Cytb.
The transition—transversion bias in musk deer was
calculated to be 22 in average, falling within the
spectrum of mammals (Brown et al., 1982; Irwin et al.,
1991). The pairwise substitution matrix among musk
deer is given in Table 4.

TABLE 4

Pairwise Comparisons of Sequence Divergence
within Musk Deer

1 2 3 4 5 6 7 8

1. A alces 46 46 46 46 49 49 49
2. M. moschiferus 139 2 2 2 3 3 3
3. M. chrysogaster 138 81 0 0 3 3 3
4. M. fuscus 141 81 24 0 3 3 3
5. M. leucogaster 142 80 27 17 3 3 3
6. M. b. bijiangensis-1 143 80 47 47 44 0 0
7. M.b. bijiangensis-2 141 81 48 48 45 5 0
8. M. b. caobangis 138 81 42 42 37 11 12

Note. The numbers below the diagonal represent transitional
substitutions; those above the diagonal represent transversional
substitutions.

Relative Rate Test and Molecular Time Scale

To determine the homogeneity of the molecular evolu-
tionary rate of Cytb in musk deer, we employed the
relative rate test given by Sarich and Wilson (1973).
The results are shown in Table 5, which indicates a
relatively even rate among all the species (Kac/
Kgc = 1.0 £ 0.06). Using silent substitutions at the
third position of codons and a transition to transversion
ratio of 10:1 for divergences up to 25 Myr (million
years), Irwin et al. (1991) suggested an estimation of a

TABLE 5

Relative Rate Test

OoTuU pairs Kag Kac Kgc KAC/KBC
M. m.vs M. c. 74 142 141 1.01
M. m.vs M. f. 75 142 143 0.99
M. m.vs M. |. 72 142 144 0.99
M. m.vs M. b. bl 72 142 145 0.98
M. m.vs M. b. b2 72 142 144 0.99
M. m.vs M. b.c 73 142 142 1.00
M. c.vs M. 1. 23 141 143 0.99
M.c.vs M. I 24 141 144 0.99
M. c.vs M. b. b1 42 141 145 0.97
M. c. vs M. b. b2 42 141 144 0.98
M.c.vs M. b.c. 37 141 142 0.99
M. f.vs M. |. 15 143 144 0.99
M. f.vs M. b. bl 43 143 145 0.99
M. f. vs M. b. b2 43 143 144 0.99
M.f.vsM.c 38 143 142 1.01
M. l.vs M. b. bl 38 144 145 0.99
M. I. vs M. b. b2 38 144 144 1.00
M. L. vsM.c 33 144 142 1.01
M. bl vs M. b. b2 4 145 144 1.01
M.blvsM.b.c 9 145 142 1.02
M.b2vs M. b.c 9 144 142 1.01

Note. The numbers are the synonymous substitutions at the third
positions of codons, where M. m refers to M. moschiferus, M. c., M.
chrysogaster, M. ., M. leucogaster, M. f., M. fuscus, M. b. b1, M. b.
bijiangensis-1, M. b. b2, M. b. bijiangensis-2, and M. b. ¢, M. b.
caobangis.
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FIG. 2.
cies of musk deer. (a) The most parsimonious tree constructed from
PAUP 3.0 (tree length = 297, Cl = 0.862). The bootstrap values with
1000 replicates are shown above the branches. (b) The NJ tree under
Kimura'’s 2-parameter model. The branch lengths are proportional to
the genetic distances in Table 4. Numbers above internal branches
are branch length confidence levels.

Phylogenetic relationships of five species and one subspe-

silent divergence rate of approximately 10% per million
years in mammals. This rate was used as a molecular
clock in dating the divergence events in musk deer.

Phylogenetic Analysis

In the parsimony analysis, within the seven se-
quences of musk deer, 85 sites (7.46%) were found to be
informative. The strength of phylogenetic signals was
evaluated through exhaustive search in PAUP3.0. The
tree length distribution is quite structured, implying
strong phylogenetic signals in the data (Hillis and
Huelsenbeck, 1992). The most parsimonious tree is
shown in Fig. 2a, and there are no trees, which are one
or two steps less parsimonious. The topology of the
most parsimonious tree is quite robust, given that the
bootstrap values for internal lineage are all above 95%,
except for the one clustering M. fuscus and M. leucogas-
ter (87%). However, when we weighted transversions
and transitions differently according to the average
ratio in musk deer, we still had the same topology
shown in Fig. 2a, but with lower bootstrap values (data
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TABLE 7

Matrix of Transversional Substitutions at the Third
Positions of Codon among the Five Pecora Families
and Tragulidae

1 2 3 4 5 6
1. Tragulidae —
2. Bovidae 64.9 —
3. Antilocapridae 68.0 45.8 —
4. Giraffidae 69.0 36.5 37.0 —
5. Moschidae 68.0 36.3 43.6 35.0 —
6. Cervidae 68.3 40.5 45.1 35.2 36.0 —

not shown). We also used the maximum likelihood and
neighbor-joining approaches for tree constructing. The
genetic distance matrix under Kimura’'s 2-parameter
model is listed in Table 6. Figure 2b shows the neighbor-
joining tree with the confidence level of branch lengths
(CP). The NJ tree is identical to the parsimonious tree
in topology, and so is the maximum likelihood tree.
Deer species commonly considered to be closely related
to musk deer were tried for tree rooting. As a result, the
topology remained unchanged for all the outgroups
used while the bootstrap confidence values varied
among them.

As mentioned above, morphologists have been debat-
ing the taxonomy of musk deer for decades. The limited
information resulting from the morphological similar-
ity among musk deer is one of the critical reasons for
the long-standing controversy. Some morphologists iden-
tify only one species, M. moschiferus (Ellerman et al.,
1950), while others (Gao, 1963) suggest three species.
Sheng (1989) proposed that M. moschiferus and M.
berezovskii should be one species due to very similar
skull structure. Based on distinct morphological charac-
ters, Groves (1986, 1995) suggested a five-species array
for musk deer and distinguished M. moschiferus from
the other musk deer, indicating it as a sister taxon to
the other species. Generally, the molecular tree is
consistent with the classification suggested by Groves
et al. (1995), in which all five suggested species show a

TABLE 6

Matrix of Genetic Distances under Kimura’'s 2-Parameter Model

1 2 3 4 5 6 7 8

1. A alces 0.0149 0.0148 0.0150 0.0151 0.0153 0.0151 0.0149
2. M. moschiferus 0.1882 0.0090 0.0090 0.0089 0.0090 0.0091 0.0091
3. M. chrysogaster 0.1870 0.0788 0.0045 0.0047 0.0066 0.0067 0.0062
4. M. fuscus 0.1907 0.0788 0.0216 0.0037 0.0066 0.0067 0.0062
5. M. leucogaster 0.1919 0.0777 0.0243 0.0152 0.0064 0.0065 0.0058
6. M. b. bijiangensis-1 0.1964 0.0787 0.0459 0.0459 0.0430 0.0020 0.0030
7. M. b. bijiangensis-2 0.1940 0.0797 0.0469 0.0469 0.0440 0.0044 0.0031
8. M. b. caobangis 0.1903 0.0797 0.0411 0.0411 0.0364 0.0098 0.0107

Note. The numbers below the diagonal are pairwise genetic distances, those above the diagonal are standard errors.
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Tragulus napu

L Tragulus javanicus
ntilocapra americana

L Giraffa camelopardalis

Tragulidae

I Antilocapridae
1 Giraffidae

N

100

96 epyceros melampus
100 Connochaetes taurinus
100 64 igmoceros lichtensteinii

100 ubalus arnee

100 0s javanicus
47 94 os taurus
ison bonasus

Bovidae
yncerus caffer

Moschus moschiferus

Moschus berezovskii

97

74

88 loschus fuscus

loschus chrysogaster Moschidae

loschus leucogaster

96

100

97 J___—Hydropotes inermis
100 Capreolus pygargus

Capreolus capreolus
QOdocoileus hemionus

28

L——Mazama sp.
Muntiacus sp.

Rangifer tarandus Cervidae

35

Alces alces

42'790

Dama dama

100 ervus nippon
Cervus elaphus

FIG. 3. The neighbor-joining tree of five pecora families, showing a close relationship between Moschidae and Cervidae. The numbers

above the lineages are bootstrap values with 1000 replicates.

certain degree of genetic divergence and M. mos-
chiferus is clearly distinguished from the others.

Even though the five-species suggestion was well
reflected by the molecular tree, the relatively short
genetic divergence among some of the species raises
another issue: how much genetic divergence is expected
among species? According to the RFLP study of mito-
chondrial DNA on deer by Cronin (1991), the mtDNA
sequence divergences within species are <3% and
4-12% between species within subfamilies. Sequence
data of Cytb (645 bp) from Chikuni et al. (1995) showed
about 7% sequence divergence among three serow
species (genus Capricornis). In our data (see Table 5),
the sequence divergence between M. moschiferus and
other species was marked at about 7% while the
divergence of M. berezovskii from the other three
species was 4%. However, the divergences among M.
chrysogaster, M. fuscus, and M. leucogaster were quite
low (<3%), given that they are listed as separate
species by morphologists. If we accept the species
status of these taxa, it appears that they were rather
recent speciation events in musk deer. Interestingly,
the three species all live in the areas of the Himalaya
and Hengduan mountains (altitude 2800 to 4800 m),
which have a rather rich biodiversity due to diverse
ecological habitats caused by orogenic movements since
the Pliocene. When we look at the fossil record of musk

deer, the oldest specimen is from M. moschiferus, which
was found in northern Asia and dated to be around
700,000 years old (Dong, 1993). Hence, the fossil record
and the molecular dating are quite consistent with each
other. By comparing the fossil evidence with our molecu-
lar data, we suggest that the historical dispersion of
musk deer in China might be from north to south.
However, it should be mentioned that with closely
related species, as is the case in musk deer, the
mitochondrial phylogeny might partially reflect the
phylogenetic relations. Interspecies introgression could
also contribute to the similar morphological pheno-
types while the mitochondrial genotypes remain differ-
ent (Bradley et al., 1996). Therefore, it will be interest-
ing to sequence some nuclear genes in future studies.

Phylogenetic Relationships of Musk Deer with Other
Pecora Groups

There have been different opinions on the taxonomic
status of musk deer. Some authors suggested its genus
status in Cervidae while others prefer its placement in
a separate family, the Moschidae (Nowak, 1991; Corbet
and Hill, 1992). We calculated the substitutions of
third-codon transversions among musk deer and other
pecora groups. These transversions have been shown to
accumulate almost linearly with time in mammals
(Irwin et al., 1991). Musk deer showed levels of se-
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guence divergence similar to those among other pecora
families (Table 7), supporting a separate family status.
Figure 3 shows the neighbor-joining tree indicating
relations among the five families of pecora. The genetic
distances were calculated under Kimura’s 2-parameter
model (data not shown). In the NJ tree, musk deer is
strongly supported as a monophyletic group and is
closely related to Cervidae. This result was also sup-
ported in our parsimony and maximum likelihood
analyses (trees not shown). Using the divergence rate
of 0.5% per Myr of transversions at third codon (Irwin
et al., 1991), the divergence times among the pecora
groups in Fig. 3 were calculated to be from 18.4 to 24.1
Myr, reflecting the radiation event that occurred 20-25
Myr ago (Irwin et al., 1991).
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