::: Welcome to Conservation Genome Resource Bank for Korean Wildlife :::
 
17_c.gif ¹®ÇåÁ¤º¸
17_c.gif ¾ß»ýµ¿¹°°ü·Ã ÀÚ·á ¹× ¼Ò½Ä
17_c.gif Á¾Á¤º¸
17_c.gif º¸ÀüÀ¯ÀüÇÐ/º¸Àü»ý¹°ÇÐ ÀÚ·á
17_c.gif ¾ß»ýµ¿¹°ÀÇÇÐ ¼Ò½Ä ¹× ÀÚ·á
  - õ¿¬±â³ä¹°ÀÇ ´ë»ó
sound.gif °¶·¯¸®
sound.gif ÀÚÀ¯°Ô½ÃÆÇ (¿¾³¯ °Ô½ÃÆÇ)
sound.gif °ü·Ã»çÀÌÆ®
sound.gif ÀÚ·á½Ç
sound.gif Ã£¾Æ¿À½Ã´Â ±æ
º¸ÀüÀ¯ÀüÇÐ/º¸Àü»ý¹°ÇÐ ÀÚ·á

View Article
Name
  ¿î¿µÀÚ 2006-10-16 14:13:27 | Hit : 25827 | Vote : 9277
Subject   [ÀÚ·á] Genetic relatedness analysis: modern data and new challenges
Genetic relatedness analysis: modern data and new challenges

Bruce S.Weir*,Amy D.Anderson*and Amanda B.Hepler ¢Ô

Abstract |

Individuals who belong to the same family or the same population are related because of their shared ancestry. Population and quantitative genetics theory is built with parameters that describe relatedness, and the estimation of these parameters from genetic markers enables progress in fields as disparate as plant breeding, human disease gene mapping and forensic science. The large number of multiallelic microsatellite loci and biallelic SNPs that are now available have markedly increased the precision with which relationships can be estimated, although they have also revealed unexpected levels of genomic heterogeneity of relationship measures.


http://www.nature.com/nrg/journal/v7/n10/pdf/nrg1960.pdf
 Prev   [ÀÚ·á] A tutorial on statistical methods for population association studies
¿î¿µÀÚ
  2006/10/16 
 Next   [ÀÚ·á] Modern computational approaches for analysing molecular genetic variation data
¿î¿µÀÚ
  2006/10/10 


Copyright 1999-2024 Zeroboard / skin by daerew
151-742 ¼­¿ïƯº°½Ã °ü¾Ç±¸ ½Å¸²9µ¿ »ê56-1 ¼­¿ï´ëÇб³ ¼öÀÇ°ú´ëÇÐ 85µ¿ 802È£
Tel 02-888-2744, Fax 02-888-2754, E-mail cgrb@cgrb.org

Copyright © 2002-2004 CGRB All Rights Reserved